This content is part of the Essential Guide: An 802.11ax survival guide: Expectations for the Wi-Fi standard
Evaluate Weigh the pros and cons of technologies, products and projects you are considering.

What's the difference between 802.11ax vs. 802.11ac?

When considering 802.11ax vs. 802.11ac, the new Wi-Fi standard has a lot to offer. What new capabilities should you expect from the new spec, also known as Wi-Fi 6?

Wireless standards documents can be hundreds of pages long and fraught with technical minutiae. But the important highlights generally boil down to a short list of talking points that differentiate one standard from its predecessor.

With the current buzz about the latest Wi-Fi standard, 802.11ax, it's worth examining 802.11ax vs. 802.11ac to highlight the important differences between the forthcoming spec and the current one.

Where 802.11ac was considered evolutionary, 802.11ax, also known as Wi-Fi 6, has sometimes been labeled revolutionary. Even if that sounds grandiose, the new .11ax magic is different enough in several technical constructs to warrant scrutiny and to appreciate the real changes under the hood versus past standards.

802.11ax will bring 5 GHz transmission across the board

Let's start with the spectrum in play for 802.11ax vs. 802.11ac. Many people don't realize when they buy a dual-band .11ac access point, the 2.4 GHz side actually reflects a much older standard, 802.11n. Why? Because 802.11ac, by definition, is a 5 GHz-only standard.

In contrast, 802.11ax will bring the Wi-Fi 6 technology enhancements to both bands. Where the .11ac standard allowed up to eight spatial streams, the hardware market stagnated at four.

For 802.11ax, a number of eight spatial stream access points (APs) have already been announced. The significance here is 802.11ac never got close to delivering its maximum potential of 6.9 Gbps because of hardware limitations. By contrast, .11ax is better positioned to deliver its own maximum of 9.6 Gbps, albeit under ideal conditions that most of us still may never achieve.

One factor that prevailed in the earliest versions of the 802.11 standard also holds true in 802.11ax. In a well-designed wireless network, you can generally expect to see better data rates at the same ranges and power levels as the technology you are replacing. Simply put, you can expect better cell quality.

Why 802.11ax will deliver as promised

Now to the nitty-gritty of what makes performance gains possible when considering 802.11ax vs. 802.11ac. You'll see the 4x multiplier used fairly frequently when comparing the specifics of the two standards.

For example, .11ax at its best uses 1024 quadrature amplitude modulation (QAM), as opposed to .11ac's 256 QAM scheme. This means the symbol duration for .11ax is four times wider than .11ac, which lets more data pass through in a given operational time slot. Then, there is nearly a 4x reduction in spacing between the modulated sub-carriers in .11ax, meaning that more spectrum is actually used for data transfer and less for management.

When comparing 802.11ax vs. 802.11ac, other significant developments include:

As good as 802.11ac is, it has no effective way to deal with interference from neighboring cells on the same channel, which can translate into reduced performance. BSS coloring in 802.11ax adds a field to the wireless frame that overcomes issues associated with same-frequency cell coexistence, leading to increased overall capacity. As you can see, there is a lot to anticipate with 802.11ax, which is impressive when you consider that 802.11ac, as a standard, is no slouch.

This was last published in May 2019

Dig Deeper on Wireless LAN (WLAN)