direct sequence spread spectrum (DSSS) or direct sequence code division multiple access (DS-CDMA)

Direct sequence spread spectrum, also known as direct sequence code division multiple access (DS-CDMA), is one of two approaches to spread spectrum modulation for digital signal transmission over the airwaves. In direct sequence spread spectrum, the stream of information to be transmitted is divided into small pieces, each of which is allocated across to a frequency channel across the spectrum. A data signal at the point of transmission is combined with a higher data-rate bit sequence (also known as a chipping code) that divides the data according to a spreading ratio. The redundant chipping code helps the signal resist interference and also enables the original data to be recovered if data bits are damaged during transmission.

Direct sequence contrasts with the other spread spectrum process, known as frequency hopping spread spectrum, or frequency hopping code division multiple access (FH-CDMA), in which a broad slice of the bandwidth spectrum is divided into many possible broadcast frequencies. In general, frequency-hopping devices use less power and are cheaper, but the performance of DS-CDMA systems is usually better and more reliable.

Spread spectrum first was developed for use by the military because it uses wideband signals that are difficult to detect and that resist attempts at jamming. In recent years, researchers have turned their attention to applying spread spectrum processes for commercial purposes, especially in local area wireless networks.

This was last updated in October 2007

Continue Reading About direct sequence spread spectrum (DSSS) or direct sequence code division multiple access (DS-CDMA)

Dig Deeper on Network protocols and standards